HERITAGE INTERNATIONAL SCHOOL, ALIGARH HOLIDAY HOMEWORK SESSION 2023-24 SUBJECT: MATHEMATICS
 CLASS: X

1. What is algorithm and lemma?
2. What is a composite number?
3. Express 429 as the product of its prime factors.
4. If $\operatorname{HCF}(336,54)=6$, find $\operatorname{LCM}(336,54)$.
5. If the product of two numbers is 1080 and their HCF is 30 , find their LCM.
6. If p and q are two prime numbers, then what is their HCF?
7. If p and q are two prime numbers, then what is their LCM?
8. What is the total number of factors of a prime number?
9. Two positive integers a and b can e written as $a=x^{3} y^{2}$ and $b=x y^{3}$, where x, y are prime numbers. Find $\operatorname{LCM}(a, b)$.
10. Express the following positive integers as the product of its prime factors:
a. 140
b. 156
c. 5005
d. 7429
11. Two numbers are in the ratio $21: 17$. If their HCF is 5 , the numbers are \qquad and \qquad
12. For what value of k, is 3 a zero of the polynomial $2 x^{2}+x+k$?
13. Find the LCM and HCF of the following pair of integers and verify: $\mathrm{LCM} \times \mathrm{HCF}=$ product of integers
a. $\quad 336$ and 54
b. 404 and 96
c. 90 and 144
14. For what value of $k,-4$ is a zero of the polynomial $x^{2}-x-(2 k+2)$?
15. Find the zeroes of the following polynomials $P(x)$ and verify the relationship between zeroes and its coefficients:
a. $\mathrm{X}^{2}+7 \mathrm{x}+12$
b. $6 x^{2}-3$
c. $7 y^{2}-\frac{11}{3} y-\frac{2}{3}$
d. $a b x^{2}+\left(b^{2}-a c\right) x-b c$
16. find a quadratic polynomial whose sum and product of zeroes are as follow:
a. $\sqrt{2}, \frac{-3}{2}$
b. $\frac{-8}{3}, \frac{4}{3}$
17. If α and β are the zeroes of the polynomial $2 \mathrm{y}^{2}+7 \mathrm{y}+5$, write the value of $\alpha+\beta+\alpha \beta$.
18. If α and β are the zeroes of the quadratic polynomial $\mathrm{P}(\mathrm{x})=\mathrm{x}^{2}-5 \mathrm{x}+4$, find the value of $\frac{1}{\alpha}+\frac{1}{\beta}-2 \alpha \beta$
19. If α and β are the zeroes of the quadratic polynomial $\mathrm{P}(\mathrm{x})=\mathrm{x}^{2}-1$, find a quadratic polynomial whose zeroes are $\frac{2 \alpha}{\beta}$ and $\frac{2 \beta}{\alpha}$.
20. If α and β are the zeros of the polynomial $\mathrm{P}(\mathrm{x})=\mathrm{x}^{2}-\mathrm{x}-2$, find a polynomial whose zeroes are

$$
2 \alpha+1 \text { and } 2 \beta+1
$$

21. If α and β are the zeroes of the quadratic polynomial $\mathrm{P}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}-2$, find the value of $\frac{1}{\alpha}-\frac{1}{\beta}$.
22. If α and β are the zeros of the polynomial $\mathrm{P}(\mathrm{x})=2 \mathrm{x}^{2}-5 \mathrm{x}+7$, find a polynomial whose zeroes are

$$
2 \alpha+3 \beta \text { and } 3 \alpha+2 \beta
$$

23. If α and β are the zeroes of the quadratic polynomial $\mathrm{P}(\mathrm{x})=4 \mathrm{x}^{2}-5 \mathrm{x}-1$, find the value of $\alpha^{2} \beta+\alpha \beta^{2}$
24. If α and β are the zeroes of the quadratic polynomial $\mathrm{P}(\mathrm{x})=6 \mathrm{x}^{2}+\mathrm{x}-2$, find the value of $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$
25. If sum of the squares of zeros of the quadratic polynomial $P(x)=x^{2}-8 x+k$ is 40 , find the value of k.
26. If α and β are the zeroes of the quadratic polynomial $\mathrm{P}(\mathrm{x})=\mathrm{x}^{2}-\mathrm{p}(\mathrm{x}+1)-\mathrm{c}$, show that $(\alpha+1)(\beta+1)=1-c$
27. If α and β are the zeroes of the quadratic polynomial such that $\alpha+\beta=24$ and $\alpha-\beta=8$, find a quadratic polynomial having α and β as its zeroes.
28. Find a quadratic polynomial whose zeroes are negative of the zeroes of the polynomial $p x^{2}+q x+r$.
29. Show that following numbers are irrational:
a. $\frac{1}{\sqrt{2}}$
b. $3+\sqrt{2}$
c. $2 \sqrt{3}-1$
d. $2-3 \sqrt{5}$
30. If α and β are the zeros of the quadratic polynomial $\mathrm{P}(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$, then evaluate:
i. $\alpha^{2}+\beta^{2}$
ii. $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$
iii. $\alpha^{3}+\beta^{3}$
iv. $\frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}}$
v. $\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}$
vi. $\alpha^{4}+\beta^{4}$
vii. $\frac{\alpha^{2}}{\beta^{2}}+\frac{\beta^{2}}{\alpha^{2}}$
