HERITAGE INTERNATIONAL SCHOOL, ALIGARH **HOLIDAY HOMEWORK SESSION 2023-24 SUBJECT: MATHEMATICS** CLASS: X

- 1. What is algorithm and lemma? 2. What is a composite number? 3. Express 429 as the product of its prime factors. 4. If HCF (336, 54) = 6, find LCM(336, 54). 5. If the product of two numbers is 1080 and their HCF is 30, find their LCM. 6. If p and q are two prime numbers, then what is their HCF? 7. If p and q are two prime numbers, then what is their LCM? 8. What is the total number of factors of a prime number? 9. Two positive integers a and b can e written as $a = x^3y^2$ and $b = xy^3$, where x, y are prime numbers. Find LCM (a, b). 10. Express the following positive integers as the product of its prime factors: a. 140 b. 156 c. 5005 d. 7429 12. For what value of k, is 3 a zero of the polynomial $2x^2 + x + k$? 13. Find the LCM and HCF of the following pair of integers and verify: LCM \times HCF = product of integers a. 336 and 54 **b.** 404 and 96 c. 90 and 144 14. For what value of k, -4 is a zero of the polynomial $x^2 - x - (2k+2)$? 15. Find the zeroes of the following polynomials P(x) and verify the relationship between zeroes and its udition coefficients: a. $X^2 + 7x + 12$ Ser. b. $6x^2 - 3$
 - c. $7y^2 \frac{11}{3}y \frac{2}{3}$ d. $abx^{2} + (b^{2} - ac)x - bc$
- 16. find a quadratic polynomial whose sum and product of zeroes are as follow:

a.
$$\sqrt{2}$$
, $\frac{-3}{2}$
b. $\frac{-8}{3}$, $\frac{4}{3}$

17. If α and β are the zeroes of the polynomial $2y^2 + 7y + 5$, write the value of $\alpha + \beta + \alpha\beta$.

- **18.** If α and β are the zeroes of the quadratic polynomial $P(x) = x^2 5x + 4$, find the value of $\frac{1}{\alpha} + \frac{1}{\beta} 2\alpha\beta$ **19.** If α and β are the zeroes of the quadratic polynomial $P(x) = x^2 - 1$, find a quadratic polynomial whose zeroes are $\frac{2\alpha}{\beta}$ and $\frac{2\beta}{\alpha}$.
- **20.** If α and β are the zeros of the polynomial $P(x) = x^2 x 2$, find a polynomial whose zeroes are $2\alpha + 1$ and $2\beta + 1$.
- **21.** If α and β are the zeroes of the quadratic polynomial $P(x) = x^2 + x 2$, find the value of $\frac{1}{\alpha} \frac{1}{\beta}$.
- **22.** If α and β are the zeros of the polynomial $P(x) = 2x^2 5x + 7$, find a polynomial whose zeroes are $2\alpha + 3\beta$ and $3\alpha + 2\beta$.
- **23.** If α and β are the zeroes of the quadratic polynomial $P(x) = 4x^2 5x 1$, find the value of $\alpha^2\beta + \alpha\beta^2$
- **24.** If α and β are the zeroes of the quadratic polynomial $P(x) = 6x^2 + x 2$, find the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$
- **25.** If sum of the squares of zeros of the quadratic polynomial $P(x) = x^2 8x + k$ is 40, find the value of k.
- **26.** If α and β are the zeroes of the quadratic polynomial $P(x) = x^2 p(x+1) c$, show that $(\alpha + 1)(\beta + 1) = 1 - c$
- 27. If α and β are the zeroes of the quadratic polynomial such that $\alpha + \beta = 24$ and $\alpha \beta = 8$, find a quadratic polynomial having α and β as its zeroes.
- **28.** Find a quadratic polynomial whose zeroes are negative of the zeroes of the polynomial $px^2 + qx + r$.
- **29.** Show that following numbers are irrational:
 - a. $\frac{1}{\sqrt{2}}$ c. $2\sqrt{3} - 1$ d. 2 - $3\sqrt{5}$ b. 3 + $\sqrt{2}$
- **30.** If α and β are the zeros of the quadratic polynomial $P(x) = ax^2 + bx + c$, then evaluate:
- re the zero: ii. $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ iii. $\alpha^{3} + p$ vi. $\alpha^{4} + \beta^{4}$ ion vii. $\frac{\alpha^{2}}{\beta^{2}} + \frac{\beta^{2}}{\alpha^{2}}$ Erudition $\alpha^2 + \beta^2$ i. $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ v.